< < VS05 : VS06 : VS07 > >

VS06: Stop Sign Gap Assist

This service package is intended to improve safety at non-signalized intersections where only the minor road has posted stop signs. It includes both onboard (for connected vehicles) and roadside signage warning systems (for non-equipped vehicles). The service package helps drivers on a minor road stopped at an intersection understand the state of activities associated with that intersection by providing a warning of unsafe gaps on the major road. The SSGA service package collects all available sensor information (major road, minor road, and median sensors) data and computes the dynamic state of the intersection in order to issue appropriate warnings and alerts.

Relevant Regions: Australia, Canada, European Union, and United States

Enterprise

Development Stage Roles and Relationships

Installation Stage Roles and Relationships

Operations Stage Roles and Relationships
(hide)

Source Destination Role/Relationship
Basic Vehicle Manager Basic Vehicle Manages
Basic Vehicle Owner Basic Vehicle Owns
Basic Vehicle Owner Basic Vehicle Manager Operations Agreement
Basic Vehicle Owner Vehicle OBE Owner Expectation of Data Provision
Basic Vehicle Supplier Basic Vehicle Owner Warranty
Connected Vehicle Roadside Equipment Manager Connected Vehicle Roadside Equipment Manages
Connected Vehicle Roadside Equipment Owner Connected Vehicle Roadside Equipment Owns
Connected Vehicle Roadside Equipment Owner Connected Vehicle Roadside Equipment Manager Operations Agreement
Connected Vehicle Roadside Equipment Owner ITS Roadway Equipment Owner Information Exchange and Action Agreement
Connected Vehicle Roadside Equipment Owner Traffic Management Center Owner Information Exchange Agreement
Connected Vehicle Roadside Equipment Owner Vehicle OBE Owner Expectation of Information Provision
Connected Vehicle Roadside Equipment Supplier Connected Vehicle Roadside Equipment Owner Warranty
Driver Roadway Owner Expectation of Roadway Condition Management
ITS Roadway Equipment Manager ITS Roadway Equipment Manages
ITS Roadway Equipment Owner Connected Vehicle Roadside Equipment Owner Information Exchange and Action Agreement
ITS Roadway Equipment Owner ITS Roadway Equipment Owns
ITS Roadway Equipment Owner ITS Roadway Equipment Manager Operations Agreement
ITS Roadway Equipment Owner Traffic Management Center Owner Information Exchange Agreement
ITS Roadway Equipment Supplier ITS Roadway Equipment Owner Warranty
Other Vehicle OBEs Manager Other Vehicle OBEs Manages
Other Vehicle OBEs Owner Other Vehicle OBEs Owns
Other Vehicle OBEs Owner Other Vehicle OBEs Manager Operations Agreement
Other Vehicle OBEs Owner Vehicle OBE Owner Expectation of Data Provision
Other Vehicle OBEs Supplier Other Vehicle OBEs Owner Warranty
Roadway Manager Roadway Environment Manages
Roadway Owner ITS Roadway Equipment Owner Information Exchange and Action Agreement
Roadway Owner Roadway Environment Owns
Roadway Owner Roadway Manager Operations Agreement
Roadway Owner Vehicle OBE Owner Expectation of Information Provision
Traffic Management Center Manager Traffic Management Center Manages
Traffic Management Center Owner Connected Vehicle Roadside Equipment Owner Information Exchange Agreement
Traffic Management Center Owner ITS Roadway Equipment Owner Information Exchange Agreement
Traffic Management Center Owner Traffic Management Center Owns
Traffic Management Center Owner Traffic Management Center Manager Operations Agreement
Traffic Management Center Supplier Traffic Management Center Owner Warranty
Vehicle OBE Manager Vehicle OBE Manages
Vehicle OBE Owner Basic Vehicle Owner Expectation of Data Provision
Vehicle OBE Owner Other Vehicle OBEs Owner Expectation of Data Provision
Vehicle OBE Owner Vehicle OBE Owns
Vehicle OBE Owner Vehicle OBE Manager Operations Agreement
Vehicle OBE Supplier Vehicle OBE Owner Warranty

Maintenance Stage Roles and Relationships

Physical

The physical diagram can be viewed in SVG or PNG format and the current format is SVG.
SVG Diagram
PNG Diagram


Display Legend in SVG or PNG

Includes Physical Objects:

Physical Object Class Description
Basic Vehicle Vehicle 'Basic Vehicle' represents a complete operating vehicle. It includes the vehicle platform that interfaces with and hosts ITS electronics and all of the driver convenience and entertainment systems, and other non-ITS electronics on-board the vehicle. Interfaces represent both internal on-board interfaces between ITS equipment and other vehicle systems and other passive and active external interfaces or views of the vehicle that support vehicle/traffic monitoring and management. External interfaces may also represent equipment that is carried into the vehicle (e.g., a smartphone that is brought into the vehicle). Internal interfaces are often implemented through a vehicle databus, which is also included in this object. Note that 'Vehicle' represents the general functions and interfaces that are associated with personal automobiles as well as commercial vehicles, emergency vehicles, transit vehicles, and other specialized vehicles.
Connected Vehicle Roadside Equipment Field 'Connected Vehicle Roadside Equipment' (CV RSE) represents the Connected Vehicle roadside devices that are used to send messages to, and receive messages from, nearby vehicles using Dedicated Short Range Communications (DSRC) or other alternative wireless communications technologies. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers.
Driver Vehicle The 'Driver' represents the person that operates a vehicle on the roadway. Included are operators of private, transit, commercial, and emergency vehicles where the interactions are not particular to the type of vehicle (e.g., interactions supporting vehicle safety applications). The Driver originates driver requests and receives driver information that reflects the interactions which might be useful to all drivers, regardless of vehicle classification. Information and interactions which are unique to drivers of a specific vehicle type (e.g., fleet interactions with transit, commercial, or emergency vehicle drivers) are covered by separate objects.
ITS Roadway Equipment Field 'ITS Roadway Equipment' represents the ITS equipment that is distributed on and along the roadway that monitors and controls traffic and monitors and manages the roadway. This physical object includes traffic detectors, environmental sensors, traffic signals, highway advisory radios, dynamic message signs, CCTV cameras and video image processing systems, grade crossing warning systems, and ramp metering systems. Lane management systems and barrier systems that control access to transportation infrastructure such as roadways, bridges and tunnels are also included. This object also provides environmental monitoring including sensors that measure road conditions, surface weather, and vehicle emissions. Work zone systems including work zone surveillance, traffic control, driver warning, and work crew safety systems are also included.
Other Vehicle OBEs Vehicle 'Other Vehicle OBEs' represents other connected vehicles that are communicating with the host vehicle. This includes all connected motorized vehicles including passenger cars, trucks, and motorcycles and specialty vehicles (e.g., maintenance vehicles, transit vehicles) that also include the basic 'Vehicle OBE' functionality that supports V2V communications. This object provides a source and destination for information transfers between connected vehicles. The host vehicle on-board equipment, represented by the Vehicle OBE physical object, sends information to, and receives information from the Other Vehicle OBEs to model all connected vehicle V2V communications in ARC-IT.
Roadway Environment Field 'Roadway Environment' represents the physical condition and geometry of the road surface, markings, signs, and other objects on or near the road surface. It also represents the environmental conditions immediately surrounding the roadway. The roadway environment must be sensed and interpreted to support automated vehicle services. Surrounding conditions may include fog, ice, snow, rain, wind, etc. which will influence the way in which a vehicle can be safely operated on the roadway. The roadway environment must be monitored to enable corrective action and information dissemination regarding roadway conditions which may adversely affect travel. Infrastructure owner/operators can improve the roadway environment to improve the performance and accuracy of vehicle-based sensors that must sense and interpret this environment. Improvements could include changes in the shape, size, design, and materials used in signs, pavement markings, and other road features.
Traffic Management Center Center The 'Traffic Management Center' monitors and controls traffic and the road network. It represents centers that manage a broad range of transportation facilities including freeway systems, rural and suburban highway systems, and urban and suburban traffic control systems. It communicates with ITS Roadway Equipment and Connected Vehicle Roadside Equipment (RSE) to monitor and manage traffic flow and monitor the condition of the roadway, surrounding environmental conditions, and field equipment status. It manages traffic and transportation resources to support allied agencies in responding to, and recovering from, incidents ranging from minor traffic incidents through major disasters.
Vehicle OBE Vehicle The Vehicle On-Board Equipment (OBE) provides the vehicle-based sensory, processing, storage, and communications functions that support efficient, safe, and convenient travel. The Vehicle OBE includes general capabilities that apply to passenger cars, trucks, and motorcycles. Many of these capabilities (e.g., see the Vehicle Safety service packages) apply to all vehicle types including personal vehicles, commercial vehicles, emergency vehicles, transit vehicles, and maintenance vehicles. From this perspective, the Vehicle OBE includes the common interfaces and functions that apply to all motorized vehicles. The radio(s) supporting V2V and V2I communications are a key component of the Vehicle OBE. Both one-way and two-way communications options support a spectrum of information services from basic broadcast to advanced personalized information services. Route guidance capabilities assist in formulation of an optimal route and step by step guidance along the travel route. Advanced sensors, processors, enhanced driver interfaces, and actuators complement the driver information services so that, in addition to making informed mode and route selections, the driver travels these routes in a safer and more consistent manner. This physical object supports all six levels of driving automation as defined in SAE J3016. Initial collision avoidance functions provide 'vigilant co-pilot' driver warning capabilities. More advanced functions assume limited control of the vehicle to maintain lane position and safe headways. In the most advanced implementations, this Physical Object supports full automation of all aspects of the driving task, aided by communications with other vehicles in the vicinity and in coordination with supporting infrastructure subsystems.
Vehicles Vehicle 'Vehicles' represents the external view of individual vehicles. It includes vehicle physical characteristics such as height, width, length, weight, and other properties (e.g., magnetic properties, number of axles) of individual vehicles that can be sensed and measured or classified. This physical object represents the physical properties of vehicles that can be sensed by vehicle-based or infrastructure-based sensors to support vehicle automation and traffic sensor systems. The analog properties provided by this terminator represent the sensor inputs that are used to detect and assess vehicle(s) within the sensor's range to support safe AV operation and/or safe traffic management.
Vulnerable Road Users Personal 'Vulnerable Road Users' represents any roadway user not in a motorized vehicle capable of operating at the posted speed for the roadway in question, and also any roadway user in a vehicle not designed to encase (and thus protect) its occupants. This includes pedestrians, cyclists, wheelchair users, two-wheeled scooter micromobility users, as well as powered scooters and motorcycles. Note that this terminator represents the physical properties of vulnerable road users and their conveyance that may be sensed to support safe vehicle automation and traffic management in mixed mode applications where a variety of road users share the right-of-way. See also 'Pedestrian' and 'Cyclist' Physical Objects that represent the human interface to these vulnerable road users.

Includes Functional Objects:

Functional Object Description Physical Object
Roadway Traffic Gap Assist 'Roadway Traffic Gap Assist' measures the headway to the next approaching vehicle. Based on programmed thresholds, unsafe gaps are identified and reported via roadside signs. Traffic gaps and associated advisories and warnings are also provided to the RSE for communication to connected vehicles. ITS Roadway Equipment
RSE Traffic Gap Assist 'RSE Traffic Gap Assist' provides advisory information to minor road drivers at a stop-sign controlled intersection to facilitate gap selection to proceed through the intersection. The application can be configured depending on the intersection geometry. It monitors Connected Vehicle traffic on the major road, augmenting infrastructure traffic detectors, to identify and measure traffic gaps. The intersection geometry, measured traffic gaps, and current gap assist sign displays are communicated to the connected vehicle that is navigating the intersection for use in driver advisories and warnings. The application may also collect vehicle size and performance profile from the connected vehicle to optimize the alerts and warnings to the capabilities of the vehicle and driver preferences. Connected Vehicle Roadside Equipment
TMC Traffic Gap Assist 'TMC Traffic Gap Assist' supports remote control and monitoring of traffic gap assist infrastructure equipment. It provides configuration information for the equipped intersection and the operating parameters for the traffic detection system that measures traffic gaps on the major road and the signs and Connected Vehicle communications that provide advisories and warnings to vehicles on the minor road attempting to navigate the intersection. It monitors field equipment operation and reports current status to the operator. Traffic Management Center
Vehicle Gap Assist 'Vehicle Gap Assist' uses V2I communications to collect traffic gap information and associated alerts and warnings that are displayed to the driver who is navigating a stop-sign controlled intersection with a major road. Vehicle OBE

Includes Information Flows:

Information Flow Description
driver information Regulatory, warning, and guidance information provided to the driver while en route to support safe and efficient vehicle operation.
driver update information Information provided to the driver-vehicle interface to inform the driver about current conditions, potential hazards, and the current status of vehicle on-board equipment. The flow includes the information to be presented to the driver and associated metadata that supports processing, prioritization, and presentation by the DVI as visual displays, audible information and warnings, and/or haptic feedback.
driver updates Information provided to the driver including visual displays, audible information and warnings, and haptic feedback. The updates inform the driver about current conditions, potential hazards, and the current status of vehicle on-board equipment.
environmental conditions Current road conditions (e.g., surface temperature, subsurface temperature, moisture, icing, treatment status) and surface weather conditions (e.g., air temperature, wind speed, precipitation, visibility) that are measured by environmental sensors.
host vehicle status Information provided to the ITS on-board equipment from other systems on the vehicle platform. This includes the current status of the powertrain, steering, and braking systems, and status of other safety and convenience systems. In implementations where GPS is not integrated into the Vehicle On-Board Equipment, the host vehicle is also the source for data describing the vehicle's location in three dimensions (latitude, longitude, elevation) and accurate time that can be used for time synchronization across the ITS environment.
roadway characteristics Detectable or measurable road characteristics such as friction coefficient and general surface conditions, road geometry and markings, etc. These characteristics are monitored or measured by ITS sensors and used to support advanced vehicle safety and control and road maintenance capabilities.
stop sign gap assist control Configuration and control of detectors that monitor traffic on the major road and signs that provide stop sign gap assist alerts and warnings to vehicles on the minor road.
stop sign gap assist info Intersection and device configuration data and warning parameters and thresholds for the stop sign gap assist application. This flow also supports remote control of the application so the application can be taken offline, reset, or restarted.
stop sign gap assist RSE status Stop sign gap assist application status. This includes current operational state and status of the RSE and a log of stop sign gap assist events including alerts and warnings issued.
stop sign gap assist status The current operational state and status of the field controller, sensors, and signs that support the stop sign gap assist application.
traffic gap information Measured gap to the next approaching vehicle per lane and direction of travel
traffic situation data Current, aggregate traffic data collected from connected vehicles that can be used to supplement or replace information collected by roadside traffic detectors. It includes raw and/or processed reported vehicle speeds, counts, and other derived measures. Raw and/or filtered vehicle control events may also be included to support incident detection.
vehicle characteristics The physical or visible characteristics of individual vehicles that can be used to detect, classify, and monitor vehicles and imaged to uniquely identify vehicles.
vehicle location and motion Data describing the vehicle's location in three dimensions, heading, speed, acceleration, braking status, and size.
vehicle profile Information about a vehicle such as vehicle make and model, fuel type, engine type, size and weight, vehicle performance and level of control automation, average emissions, average fuel consumption, passenger occupancy, or other data that can be used to classify vehicle eligibility for access to specific lanes, road segments, or regions or participation in cooperative vehicle control applications.
vehicle signage data In-vehicle signing data that augments regulatory, warning, and informational road signs and signals. The information provided would include static sign information (e.g., stop, curve warning, guide signs, service signs, and directional signs) and dynamic information (e.g., local traffic and road conditions, lane restrictions, work zones, detours, closures, advisories, and warnings).
vehicle signage local data Information provided by adjacent field equipment to support in-vehicle signing of dynamic information that is currently being displayed to passing drivers. This includes the dynamic information (e.g., local traffic and road conditions, work zone information, lane restrictions, detours, closures, advisories, parking availability, etc.) and control parameters that identify the desired timing, duration, and priority of the signage data.
vulnerable road user presence Detection of pedestrians, cyclists, and other vulnerable road users. This detection is based on physical characteristics of the user and their conveyance, which may be enhanced by design and materials that facilitate sensor-based detection and tracking of vulnerable road users.

Goals and Objectives

Associated Planning Factors and Goals

Planning Factor Goal
B. Increase the safety of the transportation system for motorized and nonmotorized users; Achieve a significant reduction in traffic fatalities and serious injuries on all public roads

Associated Objective Categories

Objective Category
Safety: Vehicle Crashes and Fatalities

Associated Objectives and Performance Measures

Objective Performance Measure
Reduce crashes at intersections Number of crashes and fatalities at signalized intersections
Reduce crashes at intersections Number of crashes and fatalities at unsignalized intersections
Reduce crashes at intersections Number of crashes and fatalities related to red-light running
Reduce crashes due to driver errors and limitations Number of crashes and fatalities related to driver inattention and distraction
Reduce crashes due to driver errors and limitations Number of crashes and fatalities related to driving while intoxicated
Reduce crashes due to unsafe drivers, vehicles and cargo on the transportation system Number of crashes and fatalities due to commercial vehicle safety violations
Reduce the rate fatalities in the region by X percent by year Y. Rate of fatalities (rate per vehicle miles travelled (VMT))
Reduce the rate of severe injuries in the region by X percent by year Y. Rate of serious injuries (rate per VMT)
Reduce the total number of crashes in the region by X percent by year Y. Total crashes per X VMT.
Reduce the total number of fatalities and severe injuries in the region by X percent by year Y. Total fatalities per X VMT.
Reduce the total number of fatalities and severe injuries in the region by X percent by year Y. Total severe injuries per X VMT.
Reduce the total number of fatalities in the region by X percent by year Y. Number of fatalities
Reduce the total number of severe injuries in the region by X percent by year Y. Number of serious injuries


 
Since the mapping between objectives and service packages is not always straight-forward and often situation-dependent, these mappings should only be used as a starting point. Users should do their own analysis to identify the best service packages for their region.

Needs and Requirements

Need Functional Object Requirement
01 Traffic Operations needs to be able to monitor traffic on a major road so that it can determine the gaps in the traffic in order to support stop gap assistance systems used by vehicles on minor roadways crossing the major roadway. Roadway Traffic Gap Assist 01 The field equipment shall measure the headway of approaching vehicles and identify gaps that would be unsafe for a vehicle to cross the intersection.
RSE Traffic Gap Assist 02 The field element shall collect vehicle location and motion as well as collecting vehicle size and performance profile from the connected vehicle to optimize the alerts and warnings to the capabilities of the vehicle.
TMC Traffic Gap Assist 01 The center shall remotely control traffic gap assist infrastructure equipment, providing configuration information for the equipped intersection and the operating parameters for the traffic detection system that measures traffic gaps on the major road and the signs.
03 The center shall monitor the status of traffic gap assist infrastructure equipment.
02 The Driver needs to be provided with an indication of when it is safe to enter the flow of traffic from a stop sign intersection. Roadway Traffic Gap Assist 02 The field equipment shall provide advisories or warnings signage to vehicles waiting to cross the intersection when the gap with approaching vehicles is determined to be unsafe for the crossing vehicle to proceed.
03 The field equipment shall provide traffic gap information as well as advisories or warnings to connected vehicles waiting to cross the intersection.
RSE Traffic Gap Assist 01 The field element shall provide advisory information to minor road drivers at a stop-sign controlled intersection to facilitate gap selection to proceed through the intersection. The advisory information includes the intersection geometry, measured traffic gaps, and current gap assist sign displays.
TMC Traffic Gap Assist 02 The center shall provide advisories and warnings to vehicles on the minor road attempting to navigate the intersection.
Vehicle Gap Assist 01 The vehicle shall broadcast its location and motion data as well as its size and performance profile to other vehicles and roadside equipment.
02 The vehicle shall present traffic gap information and associated alerts and warnings to the driver.

Related Sources

Document Name Version Publication Date
Accelerated Vehicle to Infrastructure (V2I) Safety Applications Concept of Operations Document B 3/26/2013
ITS User Services Document 1/1/2005


Security

In order to participate in this service package, each physical object should meet or exceed the following security levels.

Physical Object Security
Physical Object Confidentiality Integrity Availability Security Class
Basic Vehicle  
Connected Vehicle Roadside Equipment Moderate High High Class 5
ITS Roadway Equipment Moderate High High Class 5
Other Vehicle OBEs Not Applicable High Moderate Class 3
Roadway Environment Not Applicable Low Low Class 1
Traffic Management Center Moderate High Moderate Class 3
Vehicle OBE Low High Moderate Class 3
Vehicles  
Vulnerable Road Users  



In order to participate in this service package, each information flow triple should meet or exceed the following security levels.

Information Flow Security
Source Destination Information Flow Confidentiality Integrity Availability
Basis Basis Basis
Basic Vehicle Vehicle OBE host vehicle status Low Moderate High
Unlikely that this includes any information that could be used against the originator. This can be MODERATE or HIGH, depending on the application: This is used later on to determine whether a vehicle is likely going to violate a red light or infringe a work zone. This needs to be correct in order for the application to work correctly. Since this monitors the health and safety of the vehicle and that information is eventually reported to the driver, it should be available at all times as it directly affects vehicle and operator safety.
Connected Vehicle Roadside Equipment ITS Roadway Equipment traffic situation data Moderate Moderate Moderate
Aggregated messages may have more privacy implications than individual ones, especially if an attacker can attack more than one RSE-to-TMC connection at once. This information is used to help with incident detection. It should be verified to ensure that it is not incorrectly influencing this.THEA: only limited adverse effect if raw/processed connected vehicle data is bad/compromised; could be LOW for ISIG This information is used as supplemental information. It should operate correctly if not every single message is received. THEA: only limited adverse effect if info is not timely/readily available, could be LOW for ISIG
Connected Vehicle Roadside Equipment Traffic Management Center stop sign gap assist RSE status Moderate Moderate Moderate
This information could be of interest to a malicious individual who is attempting to determine the best way to accomplish a crime. As such it would be best to not make it easily accessible. DISC: THEA and WYO believe his information is directly observable and thus LOW. If this is compromised, it could send unnecessary maintenance workers, or cause the appearance of excessive traffic violations, leading to further unnecessary investigation. A delay in reporting this may cause a delay in necessary maintenance, but (a) this is not time-critical and (b) there are other channels for reporting malfunctioning. Additionally, there is a message received notification, which means that RSE can ensure that all intersection safety issues are delivered.
Connected Vehicle Roadside Equipment Vehicle OBE traffic gap information Low High Moderate
Directly observable data, intended for public use. This information may be used by the recipient to determine safe merge or crossing times; corruption of this information could lead directly to a serious incident. This information is directly observable, though in some instances with difficult sight lines may be more difficult to observe, which is why MODERATE was chosen. In some areas this may be LOW.
Connected Vehicle Roadside Equipment Vehicle OBE vehicle signage data Low Moderate Moderate
This data is intentionally transmitted to everyone via a broadcast. It is meant to augment other signage data, and by definition is meant to be shared with everyone. These signs are meant to augment other visual cues to the driver. They should be accurate, but any inaccuracies should be corrected for by other means. These notifications are helpful to a driver, but if the driver does not receive this notification immediately, there should still be other visual cues.
ITS Roadway Equipment Connected Vehicle Roadside Equipment traffic gap information Low High High
Directly observable data, intended for public use. While this can be corroborated visually, the RSE may rely on this information to make safety-related decisions with significant consequences, so the data must be of high quality and readily available. While this can be corroborated visually, the RSE may rely on this information to make safety-related decisions with significant consequences, so the data must be of high quality and readily available.
ITS Roadway Equipment Connected Vehicle Roadside Equipment vehicle signage local data Low Moderate Moderate
This data is intentionally transmitted to everyone via a broadcast. It is meant to augment other signage data, and by definition is meant to be shared with everyone. This information impacts the vehicle signage data sent to neighboring ASDs and should be trusted to avoid sending wrong information. DISC: WYO believes this to be HIGH. The system should know if these messages are not received.
ITS Roadway Equipment Driver driver information Not Applicable High Moderate
This data is sent to all drivers and is also directly observable, by design. This is the primary signal trusted by the driver to decide whether to go through the intersection and what speed to go through the intersection at; if it's wrong, accidents could happen. If the lights are out you have to get a policeman to direct traffic – expensive and inefficient and may cause a cascading effect due to lack of coordination with other intersections.
ITS Roadway Equipment Traffic Management Center stop sign gap assist status Moderate Moderate Moderate
This information could be of interest to a malicious individual who is attempting to determine the best way to accomplish a crime. As such it would be best to not make it easily accessible. DISC: THEA and WYO believe his information is directly observable and thus LOW. If this is compromised, it could send unnecessary maintenance workers, or cause the appearance of excessive traffic violations, leading to further unnecessary investigation. A delay in reporting this may cause a delay in necessary maintenance, but (a) this is not time-critical and (b) there are other channels for reporting malfunctioning. Additionally, there is a message received notification, which means that RSE can ensure that all intersection safety issues are delivered.
Other Vehicle OBEs Connected Vehicle Roadside Equipment vehicle location and motion Not Applicable High Moderate
This data is intentionally transmitted to everyone via a broadcast. Much of its information content can also be determined via other visual indicators Incorrect information could lead to the system not operating properly. If the system does not properly know where the vehicle is, it cannot make an accurate decision about whether there is going to be a pedestrian in the crosswalk that the vehicle is approaching. This can have a safety impact. This data is required for the system to operate properly. If this data is not available, the system cannot give accurate warning information.
Other Vehicle OBEs Vehicle OBE vehicle location and motion Not Applicable High Moderate
This data is intentionally transmitted to everyone via a broadcast. Much of its information content can also be determined via other visual indicators BSM info needs to be accurate and should not be tampered with BSM must be broadcast regularly to make data available for other vehicle OBEs, but availability cannot be guaranteed over a wireless medium
Roadway Environment ITS Roadway Equipment environmental conditions Not Applicable Low Low
Sensor-based information flows by definition have no confidentiality concerns. While typically security concerns related to sensing ignored, if considered this would be LOW, as the obfuscation or failure of any given environmental sensor is likely to be overcome by the mass of data necessary to draw environmental concluisions. While typically security concerns related to sensing ignored, if considered this would be LOW, as the obfuscation or failure of any given environmental sensor is likely to be overcome by the mass of data necessary to draw environmental concluisions.
Roadway Environment Vehicle OBE environmental conditions Not Applicable Low Low
Sensor-based information flows by definition have no confidentiality concerns. While typically security concerns related to sensing ignored, if considered this would be LOW, as the obfuscation or failure of any given environmental sensor is likely to be overcome by the mass of data necessary to draw environmental concluisions. While typically security concerns related to sensing ignored, if considered this would be LOW, as the obfuscation or failure of any given environmental sensor is likely to be overcome by the mass of data necessary to draw environmental concluisions.
Roadway Environment Vehicle OBE roadway characteristics Not Applicable Low Low
Sensor-based information flows by definition have no confidentiality concerns. While typically security concerns related to sensing ignored, if considered this would be LOW, as the obfuscation or failure of any given environmental sensor is likely to be overcome by the mass of data necessary to draw environmental concluisions. While typically security concerns related to sensing ignored, if considered this would be LOW, as the obfuscation or failure of any given environmental sensor is likely to be overcome by the mass of data necessary to draw environmental concluisions.
Traffic Management Center Connected Vehicle Roadside Equipment stop sign gap assist info Moderate High Low
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Traffic Management Center ITS Roadway Equipment stop sign gap assist control Moderate High Low
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Vehicle OBE Basic Vehicle driver update information Low Moderate Moderate
This information is all presented to the vehicle operator. Encrypting this information may make it harder to reverse engineer vehicle systems, and may defeat criminal tracking tools when the vehicle has already been compromised. Unless those scenarios are of concern to the operator or manufacturer, this can safely be set LOW. Any information presented to the operator of a vehicle should be both accurate and timely. By definition this includes safety information, but given that the driver has other means of learning about most threats, it seems difficult to justify HIGH. If HIGH is warranted, it should apply to both availability and integrity. Any information presented to the operator of a vehicle should be both accurate and timely. By definition this includes safety information, but given that the driver has other means of learning about most threats, it seems difficult to justify HIGH. If HIGH is warranted, it should apply to both availability and integrity.
Vehicle OBE Connected Vehicle Roadside Equipment vehicle location and motion Not Applicable High Moderate
This data is intentionally transmitted to everyone via a broadcast. Much of its information content can also be determined via other visual indicators Incorrect information could lead to the system not operating properly. If the system does not properly know where the vehicle is, it cannot make an accurate decision about whether there is going to be a pedestrian in the crosswalk that the vehicle is approaching. This can have a safety impact.; DISC: NYC believes this to be MODERATE This data is required for the system to operate properly. If this data is not available, the system cannot give accurate warning information.
Vehicle OBE Connected Vehicle Roadside Equipment vehicle profile Low Moderate Moderate
Includes no PII and probably includes information that could be observed, so no need for obfuscation. As this information will be used to determine the vehicle's ability to access services or be charged usage fees, it must be correct and not easily forgeable. This flow enables various services; if the flow is not available the vehicle may not be able to use those services, and also may be charged incorrectly.
Vehicle OBE Driver driver updates Not Applicable Moderate Moderate
This data is informing the driver about the safety of a nearby area. It should not contain anything sensitive, and does not matter if another person can observe it. This is the information that is presented to the driver. If they receive incorrect information, they may act in an unsafe manner. However, there are other indicators that would alert them to any hazards, such as an oncoming vehicle or crossing safety lights. If this information is not made available to the driver, then the system has not operated correctly.
Vehicle OBE Other Vehicle OBEs vehicle location and motion Not Applicable High Moderate
This data is intentionally transmitted to everyone via a broadcast. Much of its information content can also be determined via other visual indicators BSM info needs to be accurate and should not be tampered with BSM must be broadcast regularly to make data available for other vehicle OBEs, but availability cannot be guaranteed over a wireless medium

Standards

The following table lists the standards associated with physical objects in this service package. For standards related to interfaces, see the specific information flow triple pages.

Name Title Physical Object
ITE ATC ITS Cabinet Intelligent Transportation System Standard Specification for Roadside Cabinets ITS Roadway Equipment
NEMA TS 8 Cyber and Physical Security Cyber and Physical Security for Intelligent Transportation Systems ITS Roadway Equipment
Traffic Management Center
USDOT RSU Dedicated Short-Range Communications Roadside Unit Specifications (FHWA-JPO-17-589) Connected Vehicle Roadside Equipment