< < TM04 : TM05 : TM06 > >

TM05: Traffic Metering

This service package provides central monitoring and control, communications, and field equipment that support metering of traffic. It supports the complete range of metering strategies including ramp, interchange, and mainline metering. This package incorporates the instrumentation included in the TM01 service package (traffic sensors are used to measure traffic flow and queues) to support traffic monitoring so responsive and adaptive metering strategies can be implemented. Also included is configurable field equipment to provide information to drivers approaching a meter, such as advance warning of the meter, its operational status (whether it is currently on or not, how many cars per green are allowed, etc.), lane usage at the meter (including a bypass lane for HOVs) and existing queue at the meter.

Relevant Regions: Australia, Canada, European Union, and United States

Enterprise

Development Stage Roles and Relationships

Installation Stage Roles and Relationships

Operations Stage Roles and Relationships
(hide)

Source Destination Role/Relationship
ITS Roadway Equipment Manager ITS Roadway Equipment Manages
ITS Roadway Equipment Owner ITS Roadway Equipment Owns
ITS Roadway Equipment Owner ITS Roadway Equipment Manager Operations Agreement
ITS Roadway Equipment Owner Other ITS Roadway Equipment Owner Information Exchange and Action Agreement
ITS Roadway Equipment Owner Traffic Management Center Owner Information Exchange Agreement
ITS Roadway Equipment Supplier ITS Roadway Equipment Owner Warranty
Other ITS Roadway Equipment Manager Other ITS Roadway Equipment Manages
Other ITS Roadway Equipment Owner ITS Roadway Equipment Owner Information Exchange and Action Agreement
Other ITS Roadway Equipment Owner Other ITS Roadway Equipment Owns
Other ITS Roadway Equipment Owner Other ITS Roadway Equipment Manager Operations Agreement
Other ITS Roadway Equipment Supplier Other ITS Roadway Equipment Owner Warranty
Traffic Management Center Manager Traffic Management Center Manages
Traffic Management Center Manager Traffic Operations Personnel System Usage Agreement
Traffic Management Center Owner ITS Roadway Equipment Owner Information Exchange Agreement
Traffic Management Center Owner Traffic Management Center Owns
Traffic Management Center Owner Traffic Management Center Manager Operations Agreement
Traffic Management Center Supplier Traffic Management Center Owner Warranty
Traffic Operations Personnel Traffic Management Center Operates

Maintenance Stage Roles and Relationships

Functional

This service package includes the following Functional View PSpecs:

Physical Object Functional Object PSpec Number PSpec Name
ITS Roadway Equipment Roadway Basic Surveillance 1.1.1.1 Process Traffic Sensor Data
1.1.1.7 Process Road User Protection
1.1.2.11 Control Dynamic Lanes
1.2.7.16 Process Signal Control Conflict Monitoring
1.2.7.2 Monitor Roadside Equipment Operation
1.2.7.8 Provide Device Interface to Other Roadway Devices
1.3.1.3 Process Traffic Images
9.2.3.6 Collect Field Equipment Status for Repair
9.3.3.1 Collect Vehicle Speed
Roadway Traffic Information Dissemination 1.2.7.1 Process Indicator Output Data for Roads
1.2.7.2 Monitor Roadside Equipment Operation
1.2.7.5 Process Indicator Output Data for Freeways
1.2.7.8 Provide Device Interface to Other Roadway Devices
1.2.7.9 Process Roadway Information Data
Roadway Traffic Metering 1.2.7.2 Monitor Roadside Equipment Operation
1.2.7.5 Process Indicator Output Data for Freeways
1.2.7.8 Provide Device Interface to Other Roadway Devices
Traffic Management Center TMC Basic Surveillance 1.1.2.1 Process Traffic Data for Storage
1.1.2.2 Process Traffic Data
1.1.2.3 Update Data Source Static Data
1.1.2.5 Process Vehicle Situation Data
1.1.2.8 Process Roadway Environmental Data
1.1.3 Generate Predictive Traffic Model
1.1.4.1 Retrieve Traffic Data
1.1.4.2 Provide Traffic Operations Personnel Traffic Data Interface
1.1.5 Exchange Data with Other Traffic Centers
1.2.6.1 Maintain Traffic and Sensor Static Data
1.2.8 Collect Traffic Field Equipment Fault Data
1.3.1.1 Analyze Traffic Data for Incidents
1.3.2.1 Store Possible Incident Data
1.3.2.5 Provide Current Incidents Store Interface
1.3.2.6 Manage Traffic Routing
1.3.4.2 Provide Traffic Operations Personnel Incident Interface
1.3.4.5 Process Video Data
TMC Roadway Equipment Monitoring 1.2.8 Collect Traffic Field Equipment Fault Data
1.3.2.6 Manage Traffic Routing
TMC Traffic Information Dissemination 1.1.4.1 Retrieve Traffic Data
1.1.4.2 Provide Traffic Operations Personnel Traffic Data Interface
1.1.4.3 Provide Direct Media Traffic Data Interface
1.2.1 Select Strategy
1.2.4.3 Output In-vehicle Signage Data
1.2.4.4 Output Roadway Information Data
1.2.8 Collect Traffic Field Equipment Fault Data
1.3.1.1 Analyze Traffic Data for Incidents
1.3.2.1 Store Possible Incident Data
1.3.2.2 Review and Classify Possible Incidents
1.3.2.5 Provide Current Incidents Store Interface
1.3.2.6 Manage Traffic Routing
1.3.4.2 Provide Traffic Operations Personnel Incident Interface
1.3.4.5 Process Video Data
TMC Traffic Metering 1.1.4.2 Provide Traffic Operations Personnel Traffic Data Interface
1.2.1 Select Strategy
1.2.2.1 Determine Indicator State for Freeway Management
1.2.3 Determine Ramp State
1.2.4.2 Output Control Data for Freeways
1.2.4.3 Output In-vehicle Signage Data

Physical

The physical diagram can be viewed in SVG or PNG format and the current format is SVG.
SVG Diagram
PNG Diagram


Display Legend in SVG or PNG

Includes Physical Objects:

Physical Object Class Description
Driver Vehicle The 'Driver' represents the person that operates a vehicle on the roadway. Included are operators of private, transit, commercial, and emergency vehicles where the interactions are not particular to the type of vehicle (e.g., interactions supporting vehicle safety applications). The Driver originates driver requests and receives driver information that reflects the interactions which might be useful to all drivers, regardless of vehicle classification. Information and interactions which are unique to drivers of a specific vehicle type (e.g., fleet interactions with transit, commercial, or emergency vehicle drivers) are covered by separate objects.
ITS Roadway Equipment Field 'ITS Roadway Equipment' represents the ITS equipment that is distributed on and along the roadway that monitors and controls traffic and monitors and manages the roadway. This physical object includes traffic detectors, environmental sensors, traffic signals, highway advisory radios, dynamic message signs, CCTV cameras and video image processing systems, grade crossing warning systems, and ramp metering systems. Lane management systems and barrier systems that control access to transportation infrastructure such as roadways, bridges and tunnels are also included. This object also provides environmental monitoring including sensors that measure road conditions, surface weather, and vehicle emissions. Work zone systems including work zone surveillance, traffic control, driver warning, and work crew safety systems are also included.
Other ITS Roadway Equipment Field Representing another set of ITS Roadway Equipment, 'Other ITS Roadway Equipment' supports 'field device' to 'field device' communication and coordination, and provides a source and destination for information that may be exchanged between ITS Roadway Equipment. The interface enables direct coordination between field equipment. Examples include the direct interface between sensors and other roadway devices (e.g., Dynamic Message Signs) and the direct interface between roadway devices (e.g., between a Signal System Master and Signal System Local equipment) or a connection between an arterial signal system master and a ramp meter controller.
Traffic Management Center Center The 'Traffic Management Center' monitors and controls traffic and the road network. It represents centers that manage a broad range of transportation facilities including freeway systems, rural and suburban highway systems, and urban and suburban traffic control systems. It communicates with ITS Roadway Equipment and Connected Vehicle Roadside Equipment (RSE) to monitor and manage traffic flow and monitor the condition of the roadway, surrounding environmental conditions, and field equipment status. It manages traffic and transportation resources to support allied agencies in responding to, and recovering from, incidents ranging from minor traffic incidents through major disasters.
Traffic Operations Personnel Center 'Traffic Operations Personnel' represents the people that operate a traffic management center. These personnel interact with traffic control systems, traffic surveillance systems, incident management systems, work zone management systems, and travel demand management systems. They provide operator data and command inputs to direct system operations to varying degrees depending on the type of system and the deployment scenario.

Includes Functional Objects:

Functional Object Description Physical Object
Roadway Basic Surveillance 'Roadway Basic Surveillance' monitors traffic conditions using fixed equipment such as loop detectors and CCTV cameras. ITS Roadway Equipment
Roadway Traffic Information Dissemination 'Roadway Traffic Information Dissemination' includes field elements that provide information to drivers, including dynamic message signs and highway advisory radios. ITS Roadway Equipment
Roadway Traffic Metering 'Roadway Traffic Metering' includes the field equipment used to meter traffic on ramps, through interchanges, and on the mainline roadway. The equipment includes dynamic messages signs to provide guidance and information to drivers at and approaching a meter, including information for any special bypass lanes. ITS Roadway Equipment
TMC Basic Surveillance 'TMC Basic Surveillance' remotely monitors and controls traffic sensor systems and surveillance (e.g., CCTV) equipment, and collects, processes and stores the collected traffic data. Current traffic information and other real-time transportation information is also collected from other centers. The collected information is provided to traffic operations personnel and made available to other centers. Traffic Management Center
TMC Roadway Equipment Monitoring 'TMC Roadway Equipment Monitoring' monitors the operational status of field equipment and detects failures. It presents field equipment status to Traffic Operations Personnel and reports failures to the Maintenance and Construction Management Center. It tracks the repair or replacement of the failed equipment. The entire range of ITS field equipment may be monitored including sensors (traffic, infrastructure, environmental, security, speed, etc.) and devices (highway advisory radio, dynamic message signs, automated roadway treatment systems, barrier and safeguard systems, cameras, traffic signals and override equipment, ramp meters, beacons, security surveillance equipment, etc.). Traffic Management Center
TMC Traffic Information Dissemination 'TMC Traffic Information Dissemination' disseminates traffic and road conditions, closure and detour information, incident information, driver advisories, and other traffic-related data to other centers, the media, and driver information systems. It monitors and controls driver information system field equipment including dynamic message signs and highway advisory radio, managing dissemination of driver information through these systems. Traffic Management Center
TMC Traffic Metering 'TMC Traffic Metering' provides center monitoring and control of traffic metering systems including on ramps, through interchanges, and on the mainline roadway. All types of metering are covered including pre-timed/fixed time, time-based, dynamic and adaptive metering strategies and special bypasses. Metering rates can be calculated based upon historical data or current conditions including traffic, air quality, etc. Traffic Management Center

Includes Information Flows:

Information Flow Description
driver information Regulatory, warning, and guidance information provided to the driver while en route to support safe and efficient vehicle operation.
dynamic sign coordination The direct flow of information between field equipment. This includes information used to initialize, configure, and control dynamic message signs. This flow can provide message content and delivery attributes, local message store maintenance requests, control mode commands, status queries, and all other commands and associated parameters that support local management of these devices. Current operating status of dynamic message signs is returned.
roadway dynamic signage data Information used to initialize, configure, and control dynamic message signs. This flow can provide message content and delivery attributes, local message store maintenance requests, control mode commands, status queries, and all other commands and associated parameters that support remote management of these devices.
roadway dynamic signage status Current operating status of dynamic message signs.
traffic detector control Information used to configure and control traffic detector systems such as inductive loop detectors and machine vision sensors.
traffic detector coordination The direct flow of information between field equipment. This includes information used to configure and control traffic detector systems such as inductive loop detectors and machine vision sensors Raw and/or processed traffic detector data is returned that allows derivation of traffic flow variables (e.g., speed, volume, and density measures) and associated information (e.g., congestion, potential incidents). This flow includes the traffic data and the operational status of the traffic detectors
traffic detector data Raw and/or processed traffic detector data which allows derivation of traffic flow variables (e.g., speed, volume, and density measures) and associated information (e.g., congestion, potential incidents). This flow includes the traffic data and the operational status of the traffic detectors
traffic image meta data Meta data that describes traffic images. Traffic images (video) are in another flow.
traffic images High fidelity, real-time traffic images suitable for surveillance monitoring by the operator or for use in machine vision applications. This flow includes the images. Meta data that describes the images is contained in another flow.
traffic metering control Control commands and operating parameters for ramp meters, interchange meters, mainline meters, and other systems equipment associated with roadway metering operations.
traffic metering coordination The direct flow of information between field equipment. This includes control commands and operating parameters for ramp meters, interchange meters, mainline meters, and other systems equipment associated with roadway metering operations. Current operational status of the traffic metering status is also provided.
traffic metering status Current operational status and operating parameters for ramp meters, interchange meters, mainline meters and other control equipment associated with roadway metering operations.
traffic operator data Presentation of traffic operations data to the operator including traffic conditions, current operating status of field equipment, maintenance activity status, incident status, video images, security alerts, emergency response plan updates and other information. This data keeps the operator appraised of current road network status, provides feedback to the operator as traffic control actions are implemented, provides transportation security inputs, and supports review of historical data and preparation for future traffic operations activities.
traffic operator input User input from traffic operations personnel including requests for information, configuration changes, commands to adjust current traffic control strategies (e.g., adjust signal timing plans, change DMS messages), and other traffic operations data entry.
video surveillance control Information used to configure and control video surveillance systems.
video surveillance coordination The direct flow of information between field equipment. This includes information used to configure and control video surveillance systems and the high fidelity, real-time traffic images and associated meta data that are returned.

Goals and Objectives

Associated Planning Factors and Goals

Planning Factor Goal
A. Support the economic vitality of the metropolitan area, especially by enabling global competitiveness, productivity, and efficiency; Improve the national freight network, strengthen the ability of rural communities to access national and international trade markets, and support regional economic development
B. Increase the safety of the transportation system for motorized and nonmotorized users; Achieve a significant reduction in traffic fatalities and serious injuries on all public roads
D. Increase the accessibility and mobility of people and for freight; Achieve a significant reduction in congestion
E. Protect and enhance the environment, promote energy conservation, improve the quality of life, and promote consistency between transportation improvements and State and local planned growth and economic development patterns; Enhance the performance of the transportation system while protecting and enhancing the natural environment
G. Promote efficient system management and operation; Improve the efficiency of the surface transportation system
I. Improve the resiliency and reliability of the transportation system and reduce or mitigate stormwater impacts of surface transportation; Improve the resiliency and reliability of the surface transportation system

Associated Objective Categories

Objective Category
Freeway Management: Efficiency
Freeway Management: Ramp Management
Freeway Management: Reliability
Freeway Management: Transportation Management Centers
Special Event Management: Entry/Exit Travel Times
System Efficiency: Cost of Congestion
System Efficiency: Delay
System Efficiency: Duration of Congestion
System Efficiency: Energy Consumption
System Efficiency: Extent of Congestion
System Efficiency: Intensity of Congestion (Travel Time Index)
System Efficiency: Travel Time
System Reliability: Non-Recurring Delay
System Reliability: Planning Time Index
System Reliability: Travel Time 90th/95th Percentile
System Reliability: Travel Time Buffer Index
System Reliability: Variability

Associated Objectives and Performance Measures

Objective Performance Measure
Annual rate of change in regional average commute travel time will not exceed regional rate of population growth through the year Y. Average commute trip travel time (minutes).
Decrease the average buffer index for (multiple routes or trips) by X percent over Y years. The buffer index represents the extra time (buffer) most travelers add to their average travel time when planning trips. This is the extra time between the average travel time and near-worst case travel time (95th percentile). The buffer index is stated as a percentage of the average travel time. Average buffer index or buffer time can be calculated using miles traveled as a weighting factor. Buffer time = 95th percentile travel time (min) – average travel time (min).
Decrease the buffer index for (specific travel routes) by X percent over the next Y years. The buffer index represents the extra time (buffer) most travelers add to their average travel time when planning trips. This is the extra time between the average travel time and near-worst case travel time (95th percentile). The buffer index is stated as a percentage of the average travel time. Average buffer index or buffer time can be calculated using miles traveled as a weighting factor. Buffer time = 95th percentile travel time (min) – average travel time (min).
Improve average travel time during peak periods by X percent by year Y. Average travel time during peak periods (minutes).
Increase the level of transportation management center (TMC) field hardware (cameras, variable message signs, electronic toll tag readers, ITS applications, etc.) by X percent by year Y. Total amount of TMC equipment.
Increase the number freeway ramps currently metered by X percent by year Y. Total number of ramp meters (by year of installation).
Increase the percent of freeway interchanges operating at LOS Z or higher during peak periods by X percent by year Y. Percent of interchanges operating at LOS Z or above during peak periods (per year).
Maintain the rate of growth in facility miles experiencing recurring congestion as less than the population growth rate (or employment growth rate). Percent of lane-miles (or rail) operating at LOS F or V/C > 1.0
Reduce buffer index on the freeway system during peak and off-peak periods by X percent in Y years. The buffer index (represents the extra time (buffer) travelers add to their average travel time when planning trips in order to arrive on-time 95 percent of the time).
Reduce delay associated with incidents on the freeway system by X percent by year Y. Hours of delay associated with incidents.
Reduce excess fuel consumed due to congestion by X percent by year Y. Excess fuel consumed (total or per capita).
Reduce hours of delay per capita by X percent by year Y. Hours of delay (person-hours).
Reduce hours of delay per capita by X percent by year Y. Hours of delay per capita.
Reduce hours of delay per driver by X percent by year Y. Hours of delay (person-hours).
Reduce hours of delay per driver by X percent by year Y. Hours of delay per driver.
Reduce non-special event VMT in the event area during events by X percent in Y years. Non-special event VMT in the event area during events over a year.
Reduce the 90th (or 95th) percentile travel times for each route selected by X percent over Y years. 95th or 90th percentile travel times for selected routes.
Reduce the annual monetary cost of congestion per capita for the next X years. Cost (in dollars) of congestion or delay per capita.
Reduce the average buffer time needed to arrive on-time for 95 percent of trips on (specified routes) by X minutes over Y years. The buffer index represents the extra time (buffer) most travelers add to their average travel time when planning trips. This is the extra time between the average travel time and near-worst case travel time (95th percentile). The buffer index is stated as a percentage of the average travel time. Average buffer index or buffer time can be calculated using miles traveled as a weighting factor. Buffer time = 95th percentile travel time (min) – average travel time (min).
Reduce the average of the 90th (or 95th) percentile travel times for (a group of specific travel routes or trips in the region) by X minutes in Y years. 95th or 90th percentile travel times for selected routes.
Reduce the average planning time for (specific routes in region) by X minutes over the next Y years. The planning time index represents the time that must be added to travel time at free-flow speeds or the posted speed limit to ensure on time arrivals for 95 percent of the trips. Planning time = 95th percentile travel time (minutes) – Travel time at free-flow speed or posted speed limit. Average planning time index or planning time can be computed using a weighted average over person miles traveled.
Reduce the average planning time index for (specific routes in region) by X (no units) over the next Y years. The planning time index represents the time that must be added to travel time at free-flow speeds or the posted speed limit to ensure on time arrivals for 95 percent of the trips. Planning time = 95th percentile travel time (minutes) – Travel time at free-flow speed or posted speed limit. Average planning time index or planning time can be computed using a weighted average over person miles traveled.
Reduce the daily hours of recurring congestion on major freeways from X to Y by year Z. Hours per day at LOS F or V/C > 1.0 (or other threshold).
Reduce the number of congestion-inducing incidents occurring at freeway ramps by X percent by year Y. Total number of congestion-inducing incidents at freeway interchanges during peak period (per year).
Reduce the number of hours per day that the top 20 most congested roadways experience recurring congestion by X percent by year Y. Hours per day at LOS F or V/C > 1.0 (or other threshold).
Reduce the number of person hours (or vehicle hours) of delay experienced by travelers on the freeway system. Hours of delay (vehicle-hours or person-hours).
Reduce the number of person hours (or vehicle hours) of delay experienced by travelers on the freeway system. Hours of delay per capita or driver.
Reduce the percentage of facility miles (highway, arterial, rail, etc.) experiencing recurring congestion during the peak period by X percent by year Y. Percent of lane-miles (or rail) operating at LOS F or V/C > 1.0
Reduce the regional average travel time index by X percent per year. Travel time index (the average travel time during the peak period, using congested speeds, divided by the off-peak period travel time, using posted or free-flow speeds).
Reduce the share of freeway miles at Level of Service (LOS) X by Y by year Z. Miles at LOS X or V/C > 1.0 (or other threshold).
Reduce the variability of travel time on specified routes by X percent during peak and off-peak periods by year Y. Variance of travel time. Variance is the sum of the squared deviations from the mean. This can also be calculated as the standard deviation of travel time. Standard deviation is the square root of variance.
Reduce total energy consumption per capita for transportation by X percent by year Y. Total energy consumed per capita for transportation.
Reduce total fuel consumption per capita for transportation by X percent by year Y. Total fuel consumed per capita for transportation.
Reduce total person hours of delay (or travel-time delay per capita) by time period (peak, off-peak) caused by all transient events such as traffic incidents, special events, and work zones. Total person hours of delay during scheduled and/or unscheduled disruptions to travel.
Reduce total person hours of delay (or travel-time delay per capita) by time period (peak, off-peak) caused by scheduled events, work zones, or system maintenance by x hours in y years. Travel time delay during scheduled and/or unscheduled disruptions to travel.
Reduce total person hours of delay (or travel-time delay per capita) by time period (peak, off-peak) caused by unscheduled disruptions to travel. Total person hours of delay during scheduled and/or unscheduled disruptions to travel.


 
Since the mapping between objectives and service packages is not always straight-forward and often situation-dependent, these mappings should only be used as a starting point. Users should do their own analysis to identify the best service packages for their region.

Needs and Requirements

Need Functional Object Requirement
01 Traffic Operations need to be able to monitor and control traffic metering equipment in order to regulate the flow of traffic on ramps, interchanges, and the mainline. Roadway Basic Surveillance 01 The field element shall collect, process, digitize, and send traffic sensor data (speed, volume, and occupancy) to the center for further analysis and storage, under center control.
02 The field element shall collect, process, and send traffic images to the center for further analysis and distribution.
Roadway Traffic Information Dissemination 01 The field element shall include dynamic message signs for dissemination of traffic and other information to drivers, under center control; the DMS may be either those that display variable text messages, or those that have fixed format display(s) (e.g. vehicle restrictions, or lane open/close).
Roadway Traffic Metering 01 The field element shall regulate the flow of traffic on ramps, interchanges, and the mainline, under center control.
02 The field element shall monitor operation of ramp, interchange, and mainline meters and report to the center any conflicts between received control plans and current system operation.
04 The field element shall provide indications to the driver that the metering system is active and provide safe transitions between active and inactive status.
TMC Basic Surveillance 01 The center shall monitor, analyze, and store traffic sensor data (speed, volume, occupancy) collected from field elements under remote control of the center.
07 The center shall remotely control devices to detect traffic.
TMC Roadway Equipment Monitoring 01 The center shall collect and store sensor (traffic, pedestrian, multimodal crossing) operational status.
TMC Traffic Metering 01 The center shall remotely control systems to manage use of the freeways, including ramp, interchange, and mainline metering.
02 Traffic Operations need to monitor the status of traffic metering equipment. Roadway Basic Surveillance 04 The field element shall return sensor and CCTV system operational status to the controlling center.
05 The field element shall return sensor and CCTV system fault data to the controlling center for repair.
Roadway Traffic Information Dissemination 03 The field element shall provide operational status for the driver information systems equipment (DMS, HAR, etc.) to the center.
04 The field element shall provide fault data for the driver information systems equipment (DMS, HAR, etc.) to the center for repair.
Roadway Traffic Metering 03 The field element shall return ramp, interchange, and mainline meter operational status to the controlling center.
05 The field element shall return ramp, interchange, and mainline meter fault data to the maintenance center for repair.
TMC Roadway Equipment Monitoring 02 The center shall collect and store CCTV surveillance system (traffic, pedestrian) operational status.
TMC Traffic Information Dissemination 03 The center shall collect operational status for the driver information systems equipment (DMS, HAR, etc.).
04 The center shall collect fault data for the driver information systems equipment (DMS, HAR, etc.) for repair.
TMC Traffic Metering 02 The center shall collect operational status from ramp meters, interchange meters, and mainline meters and compare against the control information sent by the center.
03 The center shall collect fault data from ramp meters, interchange meters, and mainline meters.
03 Traffic Operations need to be able to implement control strategies utilizing the traffic metering equipment on ramps, interchanges, and on the mainline. TMC Traffic Information Dissemination 01 The center shall remotely control dynamic messages signs for dissemination of traffic and other information to drivers.
TMC Traffic Metering 04 The center shall implement control strategies, under control of center personnel, on some or all of the freeway network devices (e.g. ramp meters, interchange meters, and mainline meters), based on data from sensors monitoring traffic conditions upstream, downstream, and queue data on the approaches to the meters.

Related Sources

Document Name Version Publication Date
ITS User Services Document 1/1/2005


Security

In order to participate in this service package, each physical object should meet or exceed the following security levels.

Physical Object Security
Physical Object Confidentiality Integrity Availability Security Class
ITS Roadway Equipment Moderate Moderate Moderate Class 2
Other ITS Roadway Equipment Moderate Moderate Moderate Class 2
Traffic Management Center Moderate High Moderate Class 3



In order to participate in this service package, each information flow triple should meet or exceed the following security levels.

Information Flow Security
Source Destination Information Flow Confidentiality Integrity Availability
Basis Basis Basis
ITS Roadway Equipment Driver driver information Not Applicable High Moderate
This data is sent to all drivers and is also directly observable, by design. This is the primary signal trusted by the driver to decide whether to go through the intersection and what speed to go through the intersection at; if it's wrong, accidents could happen. If the lights are out you have to get a policeman to direct traffic – expensive and inefficient and may cause a cascading effect due to lack of coordination with other intersections.
ITS Roadway Equipment Other ITS Roadway Equipment dynamic sign coordination Moderate Moderate Moderate
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
ITS Roadway Equipment Other ITS Roadway Equipment traffic detector coordination Moderate Moderate Low
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
ITS Roadway Equipment Other ITS Roadway Equipment traffic metering coordination Moderate Moderate Moderate
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
ITS Roadway Equipment Other ITS Roadway Equipment video surveillance coordination Moderate Moderate Moderate
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
ITS Roadway Equipment Traffic Management Center roadway dynamic signage status Moderate Moderate Moderate
Device status information should not be available, as those with criminal intent may use this information toward their own ends. Data is intended to feed dissemination channels, either C-ITS messages or DMS or other channels, so it should generally be correct as it is distributed widely and any forgery or corrupted data will have widespread impact. Failure of this flow affects traveler information dissemination, the importance of which varies with the data contained in the flow and the scenario. Could be LOW in many instances.
ITS Roadway Equipment Traffic Management Center traffic detector data Low Moderate Moderate
No impact if someone sees the data Some minimal guarantee of data integrity is necessary for all C-ITS flows. THEA believes this to be LOW.only limited adverse effect if raw/processed traffic detector data is bad/compromised; DISC: WYO believes this to be HIGH Only limited adverse effect of info is not timely/readily available, however without this information it will be difficult to perform traffic management activities, thus MODERATE. If not used for management, may be LOW.
ITS Roadway Equipment Traffic Management Center traffic image meta data Low Moderate Moderate
Traffic image data is generally intended for public consumption, and in any event is already video captured in the public arena, so this must be LOW. While accuracy of this data is important for decision making purposes, applications should be able to cfunction without it. Thus MODERATE generally. While accuracy of this data is important for decision making purposes, applications should be able to function without it. Thus MODERATE generally.
ITS Roadway Equipment Traffic Management Center traffic images Low Moderate Low
Traffic image data is generally intended for public consumption, and in any event is already video captured in the public arena, so this must be LOW. Generally transportation coordination information should be correct between source and destination, or inappropriate actions may be taken. While useful, there is no signficant impact if this flow is not available.
ITS Roadway Equipment Traffic Management Center traffic metering status Moderate Moderate Moderate
Device status information should be concealed, as an unauthorized observer could use this to reverse engineer device control systems. Device status information needs to be available and correct, or the controlling system may take inappropriate maintenance action, costing time and money. Device status information needs to be available and correct, or the controlling system may take inappropriate maintenance action, costing time and money.
Other ITS Roadway Equipment ITS Roadway Equipment dynamic sign coordination Moderate Moderate Moderate
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Other ITS Roadway Equipment ITS Roadway Equipment traffic detector coordination Moderate Moderate Low
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Other ITS Roadway Equipment ITS Roadway Equipment traffic metering coordination Moderate Moderate Moderate
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Other ITS Roadway Equipment ITS Roadway Equipment video surveillance coordination Moderate Moderate Moderate
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Traffic Management Center ITS Roadway Equipment roadway dynamic signage data Moderate Moderate Moderate
Device control information should not be available, as those with criminal intent may use this information toward their own ends. Data is intended to feed dissemination channels, either C-ITS messages or DMS or other channels, so it should generally be correct as it is distributed widely and any forgery or corrupted data will have widespread impact. Occasional outages of this flow will delay dissemination of the data to travelers (the eventual end user) which could have significant impacts on travel, both safety and mobility impacts.
Traffic Management Center ITS Roadway Equipment traffic detector control Moderate Moderate Low
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. DISC: THEA, WYO believe this to be LOW: encrypted, authenticated, proprietary; but should not cause severe damage if seen Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH.. From THEA: should be accurate and not be tampered with; could enable outside control of traffic sensors but should not cause severe harm, but could cause issues with traffic sensor data received and be detrimental to operations Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.. From THEA: want updates but delayed information will not be severe; should be able to operate from a previous/default control/config. DISC: WYO believes this to be MODERATE
Traffic Management Center ITS Roadway Equipment traffic metering control Moderate High Moderate
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Traffic Management Center ITS Roadway Equipment video surveillance control Moderate Moderate Moderate
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Traffic Management Center Traffic Operations Personnel traffic operator data Moderate Moderate Moderate
Backoffice operations flows should have minimal protection from casual viewing, as otherwise imposters could gain illicit control or information that should not be generally available. Information presented to backoffice system operators must be consistent or the operator may perform actions that are not appropriate to the real situation. The backoffice system operator should have access to system operation. If this interface is down then control is effectively lost, as without feedback from the system the operator has no way of knowing what is the correct action to take.
Traffic Operations Personnel Traffic Management Center traffic operator input Moderate High High
Backoffice operations flows should have minimal protection from casual viewing, as otherwise imposters could gain illicit control or information that should not be generally available. Backoffice operations flows should generally be correct and available as these are the primary interface between operators and system. Backoffice operations flows should generally be correct and available as these are the primary interface between operators and system.

Standards

The following table lists the standards associated with physical objects in this service package. For standards related to interfaces, see the specific information flow triple pages.

Name Title Physical Object
ITE ATC Advanced Transportation Controller ITS Roadway Equipment
ITE ATC API Application Programming Interface Standard for the Advanced Transportation Controller ITS Roadway Equipment
ITE ATC ITS Cabinet Intelligent Transportation System Standard Specification for Roadside Cabinets ITS Roadway Equipment
ITE ATC Model 2070 Model 2070 Controller Standard ITS Roadway Equipment
NEMA TS 8 Cyber and Physical Security Cyber and Physical Security for Intelligent Transportation Systems ITS Roadway Equipment
Traffic Management Center
NEMA TS2 Traffic Controller Assemblies Traffic Controller Assemblies with NTCIP Requirements ITS Roadway Equipment
NEMA TS4 Hardware Standards for DMS Hardware Standards for Dynamic Message Signs (DMS) With NTCIP Requirements ITS Roadway Equipment