Link Type: Environment
Vehicles --> Vehicle OBE:
vehicle characteristics
Definitions
vehicle characteristics (Information Flow): The physical or visible characteristics of individual vehicles that can be used to detect, classify, and monitor vehicles and imaged to uniquely identify vehicles.
Vehicles (Source Physical Object): 'Vehicles' represents the external view of individual vehicles. It includes vehicle physical characteristics such as height, width, length, weight, and other properties (e.g., magnetic properties, number of axles) of individual vehicles that can be sensed and measured or classified. This physical object represents the physical properties of vehicles that can be sensed by vehicle-based or infrastructure-based sensors to support vehicle automation and traffic sensor systems. The analog properties provided by this terminator represent the sensor inputs that are used to detect and assess vehicle(s) within the sensor's range to support safe AV operation and/or safe traffic management.
Vehicle OBE (Destination Physical Object): The Vehicle On-Board Equipment (OBE) provides the vehicle-based sensory, processing, storage, and communications functions that support efficient, safe, and convenient travel. The Vehicle OBE includes general capabilities that apply to passenger cars, trucks, and motorcycles. Many of these capabilities (e.g., see the Vehicle Safety service packages) apply to all vehicle types including personal vehicles, commercial vehicles, emergency vehicles, transit vehicles, and maintenance vehicles. From this perspective, the Vehicle OBE includes the common interfaces and functions that apply to all motorized vehicles. The radio(s) supporting V2V and V2I communications are a key component of the Vehicle OBE. Both one-way and two-way communications options support a spectrum of information services from basic broadcast to advanced personalized information services. Route guidance capabilities assist in formulation of an optimal route and step by step guidance along the travel route. Advanced sensors, processors, enhanced driver interfaces, and actuators complement the driver information services so that, in addition to making informed mode and route selections, the driver travels these routes in a safer and more consistent manner. This physical object supports all six levels of driving automation as defined in SAE J3016. Initial collision avoidance functions provide 'vigilant co-pilot' driver warning capabilities. More advanced functions assume limited control of the vehicle to maintain lane position and safe headways. In the most advanced implementations, this Physical Object supports full automation of all aspects of the driving task, aided by communications with other vehicles in the vicinity and in coordination with supporting infrastructure subsystems.
Included In
This Triple is in the following Service Packages:
- VS01: Autonomous Vehicle Safety Systems
- VS02: V2V Basic Safety
- VS03: Situational Awareness
- VS04: V2V Special Vehicle Alert
- VS06: Stop Sign Gap Assist
- VS08: Queue Warning
- VS13: Intersection Safety Warning and Collision Avoidance
- VS14: Cooperative Adaptive Cruise Control
- VS15: Infrastructure Enhanced Cooperative Adaptive Cruise Control
- VS16: Automated Vehicle Operations
This Triple is in the following Functional Objects:
This Triple is described by the following Functional View Data Flows:
This Triple has the following triple relationships:
None |
Communication Solutions
No communications solutions identified.Characteristics
None defined |
Interoperability | Description |
---|---|
National | This triple should be implemented consistently within the geopolitical region through which movement is essentially free (e.g., the United States, the European Union). |
Security
Information Flow Security | ||||
---|---|---|---|---|
Confidentiality | Integrity | Availability | ||
Security levels have not been defined yet. |
None defined |