< < MC02 : MC03 : MC04 > >

MC03: Roadway Automated Treatment

This service package automatically treats a roadway section based on environmental or atmospheric conditions. Treatments include fog dispersion, anti-icing chemicals, etc. The service package includes the environmental sensors that detect adverse conditions, the automated treatment system itself, and driver information systems (e.g., dynamic message signs) that warn drivers when the treatment system is activated.

Relevant Regions: Australia, Canada, European Union, and United States

Enterprise

Development Stage Roles and Relationships

Installation Stage Roles and Relationships

Operations Stage Roles and Relationships
(hide)

Source Destination Role/Relationship
ITS Roadway Equipment Manager ITS Roadway Equipment Manages
ITS Roadway Equipment Owner ITS Roadway Equipment Owns
ITS Roadway Equipment Owner ITS Roadway Equipment Manager Operations Agreement
ITS Roadway Equipment Owner Maint and Constr Management Center Owner Information Exchange Agreement
ITS Roadway Equipment Owner Other ITS Roadway Equipment Owner Information Exchange and Action Agreement
ITS Roadway Equipment Supplier ITS Roadway Equipment Owner Warranty
Maint and Constr Center Personnel Maint and Constr Management Center Operates
Maint and Constr Management Center Manager Maint and Constr Center Personnel System Usage Agreement
Maint and Constr Management Center Manager Maint and Constr Management Center Manages
Maint and Constr Management Center Owner ITS Roadway Equipment Owner Information Exchange Agreement
Maint and Constr Management Center Owner Maint and Constr Management Center Owns
Maint and Constr Management Center Owner Maint and Constr Management Center Manager Operations Agreement
Maint and Constr Management Center Supplier Maint and Constr Management Center Owner Warranty
Other ITS Roadway Equipment Manager Other ITS Roadway Equipment Manages
Other ITS Roadway Equipment Owner ITS Roadway Equipment Owner Information Exchange and Action Agreement
Other ITS Roadway Equipment Owner Other ITS Roadway Equipment Owns
Other ITS Roadway Equipment Owner Other ITS Roadway Equipment Manager Operations Agreement
Other ITS Roadway Equipment Supplier Other ITS Roadway Equipment Owner Warranty

Maintenance Stage Roles and Relationships

Physical

The physical diagram can be viewed in SVG or PNG format and the current format is SVG.
SVG Diagram
PNG Diagram


Display Legend in SVG or PNG

Includes Physical Objects:

Physical Object Class Description
Driver Vehicle The 'Driver' represents the person that operates a vehicle on the roadway. Included are operators of private, transit, commercial, and emergency vehicles where the interactions are not particular to the type of vehicle (e.g., interactions supporting vehicle safety applications). The Driver originates driver requests and receives driver information that reflects the interactions which might be useful to all drivers, regardless of vehicle classification. Information and interactions which are unique to drivers of a specific vehicle type (e.g., fleet interactions with transit, commercial, or emergency vehicle drivers) are covered by separate objects.
ITS Roadway Equipment Field 'ITS Roadway Equipment' represents the ITS equipment that is distributed on and along the roadway that monitors and controls traffic and monitors and manages the roadway. This physical object includes traffic detectors, environmental sensors, traffic signals, highway advisory radios, dynamic message signs, CCTV cameras and video image processing systems, grade crossing warning systems, and ramp metering systems. Lane management systems and barrier systems that control access to transportation infrastructure such as roadways, bridges and tunnels are also included. This object also provides environmental monitoring including sensors that measure road conditions, surface weather, and vehicle emissions. Work zone systems including work zone surveillance, traffic control, driver warning, and work crew safety systems are also included.
Maint and Constr Center Personnel Center The people that directly interface with a Maintenance and Construction Management Center. These personnel interact with fleet dispatch and management systems, road maintenance systems, incident management systems, work plan scheduling systems, and work zone management systems. They provide operator data and command inputs to direct system operations to varying degrees depending on the type of system and the deployment scenario.
Maint and Constr Management Center Center The 'Maint and Constr Management Center' monitors and manages roadway infrastructure construction and maintenance activities. Representing both public agencies and private contractors that provide these functions, this physical object manages fleets of maintenance, construction, or special service vehicles (e.g., snow and ice control equipment). The physical object receives a wide range of status information from these vehicles and performs vehicle dispatch, routing, and resource management for the vehicle fleets and associated equipment. The physical object participates in incident response by deploying maintenance and construction resources to an incident scene, in coordination with other center physical objects. The physical object manages equipment at the roadside, including environmental sensors and automated systems that monitor and mitigate adverse road and surface weather conditions. It manages the repair and maintenance of both non-ITS and ITS equipment including the traffic controllers, detectors, dynamic message signs, signals, and other equipment associated with the roadway infrastructure. Weather information is collected and fused with other data sources and used to support advanced decision support systems.

The physical object remotely monitors and manages ITS capabilities in work zones, gathering, storing, and disseminating work zone information to other systems. It manages traffic in the vicinity of the work zone and advises drivers of work zone status (either directly at the roadside or through an interface with the Transportation Information Center or Traffic Management Center physical objects.)

Construction and maintenance activities are tracked and coordinated with other systems, improving the quality and accuracy of information available regarding closures and other roadway construction and maintenance activities.
Other ITS Roadway Equipment Field Representing another set of ITS Roadway Equipment, 'Other ITS Roadway Equipment' supports 'field device' to 'field device' communication and coordination, and provides a source and destination for information that may be exchanged between ITS Roadway Equipment. The interface enables direct coordination between field equipment. Examples include the direct interface between sensors and other roadway devices (e.g., Dynamic Message Signs) and the direct interface between roadway devices (e.g., between a Signal System Master and Signal System Local equipment) or a connection between an arterial signal system master and a ramp meter controller.

Includes Functional Objects:

Functional Object Description Physical Object
MCM Automated Treatment System Control 'MCM Automated Treatment System Control' remotely monitors and controls automated road treatment systems that disperse anti-icing chemicals or otherwise treat a road segment. The automated treatment system may be remotely activated by this object or it may include environmental sensors that activate the system automatically based on sensed environmental conditions. This object monitors treatment system operation, sets operating parameters, and directly controls system activation if necessary. Maint and Constr Management Center
MCM Environmental Information Collection 'MCM Environmental Information Collection' collects current road and weather conditions using data collected from environmental sensors deployed on and about the roadway. In addition to fixed sensor stations at the roadside, this functional object also collects environmental information from sensor systems located on Maintenance and Construction Vehicles. It also collects current and forecast environmental conditions information that is made available by other systems. The functional object aggregates the sensor system data and provides it, along with data attributes to other applications. Maint and Constr Management Center
MCM Traffic Information Dissemination 'MCM Traffic Information Dissemination' uses dynamic message signs to disseminate traffic and road conditions, closure and detour information, incident information, driver advisories, and other maintenance-related data. It monitors and controls driver information system field equipment including dynamic message signs, managing dissemination of driver information through these systems. Maint and Constr Management Center
Roadway Automated Treatment 'Roadway Automated Treatment' automatically treats a roadway section based on environmental or atmospheric conditions or under center control. Treatments include fog dispersion, anti-icing chemicals, etc. It communicates with the center and environmental sensors to support system activation and optionally with sign(s) that warn the driver in adverse conditions when the system is activated. ITS Roadway Equipment
Roadway Environmental Monitoring 'Roadway Environmental Monitoring' measures environmental conditions and communicates the collected information back to a center where it can be monitored and analyzed or to other field devices to support communications to vehicles. A broad array of weather and road surface information may be collected. Weather conditions that may be measured include temperature, wind, humidity, precipitation, and visibility. Surface and sub-surface sensors can measure road surface temperature, moisture, icing, salinity, and other metrics. ITS Roadway Equipment
Roadway Traffic Information Dissemination 'Roadway Traffic Information Dissemination' includes field elements that provide information to drivers, including dynamic message signs and highway advisory radios. ITS Roadway Equipment

Includes Information Flows:

Information Flow Description
driver information Regulatory, warning, and guidance information provided to the driver while en route to support safe and efficient vehicle operation.
dynamic sign coordination The direct flow of information between field equipment. This includes information used to initialize, configure, and control dynamic message signs. This flow can provide message content and delivery attributes, local message store maintenance requests, control mode commands, status queries, and all other commands and associated parameters that support local management of these devices. Current operating status of dynamic message signs is returned.
environmental sensor coordination The direct flow of information between field equipment. This includes configuration and control of environmental sensors and the current road conditions (e.g., surface temperature, subsurface temperature, moisture, icing, treatment status) and surface weather conditions (e.g., air temperature, wind speed, precipitation, visibility) as measured and reported by fixed and/or mobile environmental sensors. Operational status of the sensors is also included.
environmental sensor data Current road conditions (e.g., surface temperature, subsurface temperature, moisture, icing, treatment status) and surface weather conditions (e.g., air temperature, wind speed, precipitation, visibility) as measured and reported by fixed and/or mobile environmental sensors. Operational status of the sensors is also included.
environmental sensors control Data used to configure and control environmental sensors.
maint and constr center personnel input User input from maintenance and construction center personnel including routing information, scheduling data, dispatch instructions, device configuration and control, resource allocations, alerts, incident and emergency response plan coordination.
maint and constr operations information presentation Presentation of maintenance and construction operations information to center personnel. This information includes maintenance resource status (vehicles, equipment, and personnel), work schedule information, work status, road and weather conditions, traffic information, incident information and associated resource requests, security alerts, emergency response plans and a range of other information that supports efficient maintenance and construction operations and planning.
roadway dynamic signage data Information used to initialize, configure, and control dynamic message signs. This flow can provide message content and delivery attributes, local message store maintenance requests, control mode commands, status queries, and all other commands and associated parameters that support remote management of these devices.
roadway dynamic signage status Current operating status of dynamic message signs.
roadway treatment coordination The direct flow of information between field equipment. This includes control data for remotely located, automated devices, that treat the road surface (e.g., de-icing applications) and the current operational status of automated roadway treatment devices.
roadway treatment system control Control data for remotely located, automated devices, that treat the road surface (e.g., de-icing applications).
roadway treatment system status Current operational status of automated roadway treatment devices (e.g., anti-icing systems).

Goals and Objectives

Associated Planning Factors and Goals

Planning Factor Goal
B. Increase the safety of the transportation system for motorized and nonmotorized users; Achieve a significant reduction in traffic fatalities and serious injuries on all public roads

Associated Objective Categories

Objective Category
Safety: Vehicle Crashes and Fatalities
Travel Weather Management: Clearance Time (Weather-Related Debris)

Associated Objectives and Performance Measures

Objective Performance Measure
Reduce crashes due to road weather conditions Number of crashes and fatalities related to weather conditions
Reduce lane departure crashes Number of crashes and fatalities related to inappropriate lane departure, crossing or merging
Reduce the rate fatalities in the region by X percent by year Y. Rate of fatalities (rate per vehicle miles travelled (VMT))
Reduce the rate of severe injuries in the region by X percent by year Y. Rate of serious injuries (rate per VMT)
Reduce the total number of crashes in the region by X percent by year Y. Total crashes per X VMT.
Reduce the total number of fatalities and severe injuries in the region by X percent by year Y. Total fatalities per X VMT.
Reduce the total number of fatalities and severe injuries in the region by X percent by year Y. Total severe injuries per X VMT.
Reduce the total number of fatalities in the region by X percent by year Y. Number of fatalities
Reduce the total number of severe injuries in the region by X percent by year Y. Number of serious injuries


 
Since the mapping between objectives and service packages is not always straight-forward and often situation-dependent, these mappings should only be used as a starting point. Users should do their own analysis to identify the best service packages for their region.

Needs and Requirements

Need Functional Object Requirement
01 Maintenance and construction operations need to be able to automatically treat a roadway section based on environmental or atmospheric conditions. MCM Automated Treatment System Control 01 The center shall remotely control automated roadway treatment systems. Treatments can be in the form of fog dispersion, anti-icing chemicals, etc.
05 The center shall accept requests for automated roadway treatment system activation from center personnel.
MCM Environmental Information Collection 01 The center shall remotely control environmental sensors that measure road surface temperature, moisture, icing, salinity, and other measures.
Roadway Automated Treatment 01 The field element shall activate automated roadway treatment systems based on environmental or atmospheric conditions. Treatments can be in the form of fog dispersion, anti-icing chemicals, etc.
02 The field element shall activate automated roadway treatment systems under center control. Treatments can be in the form of fog dispersion, anti-icing chemicals, etc.
Roadway Environmental Monitoring 03 The field element's environmental sensors shall be remotely controlled by a maintenance center.
10 The field element shall provide weather and road surface condition data to centers.
02 Maintenance and construction operations need to be able to warn drivers when a roadway treatment system is activated. MCM Automated Treatment System Control 02 The center shall remotely control the environmental sensors that upon detecting changes in environmental or atmospheric conditions, automatically activate roadway treatment systems.
MCM Traffic Information Dissemination 01 The center shall uses dynamic message signs to warn drivers when the treatment system is activated.
02 The center shall provide information used to initialize, configure, and control dynamic message signs.
Roadway Traffic Information Dissemination 01 The field element shall include dynamic message signs for dissemination of traffic and other information to drivers, under center control; the DMS may be either those that display variable text messages, or those that have fixed format display(s) (e.g. vehicle restrictions, or lane open/close).
06 The field element shall include devices that provide data and status information to other field element devices without center control.
07 The field element shall include devices that receive configuration data from other field element devices, without center control.
03 Maintenance and construction operations need to be able to monitor operational status of the environmental sensors that detect adverse conditions. MCM Automated Treatment System Control 03 The center shall collect automated roadway treatment system and associated environmental sensor operational status.
04 The center shall collect automated roadway treatment system and associated environmental sensor fault data and request repair.
MCM Environmental Information Collection 01 The center shall remotely control environmental sensors that measure road surface temperature, moisture, icing, salinity, and other measures.
Roadway Automated Treatment 03 The field element shall return automated roadway treatment system and associated environmental sensor operational status to the maintenance center.
04 The field element shall return automated roadway treatment system and associated environmental sensor fault data to the maintenance center for repair.
Roadway Environmental Monitoring 01 The field element shall include surface and sub-surface environmental sensors that measure road surface temperature, moisture, icing, salinity, and other measures.
03 The field element's environmental sensors shall be remotely controlled by a maintenance center.
08 The field element shall provide environmental sensor equipment fault indication to the controlling center or maintenance vehicle.

Related Sources

Document Name Version Publication Date
ITS User Services Document 1/1/2005


Security

In order to participate in this service package, each physical object should meet or exceed the following security levels.

Physical Object Security
Physical Object Confidentiality Integrity Availability Security Class
ITS Roadway Equipment Moderate High Moderate Class 3
Maint and Constr Management Center Moderate High Moderate Class 3
Other ITS Roadway Equipment Moderate Moderate Moderate Class 2



In order to participate in this service package, each information flow triple should meet or exceed the following security levels.

Information Flow Security
Source Destination Information Flow Confidentiality Integrity Availability
Basis Basis Basis
ITS Roadway Equipment Driver driver information Not Applicable High Moderate
This data is sent to all drivers and is also directly observable, by design. This is the primary signal trusted by the driver to decide whether to go through the intersection and what speed to go through the intersection at; if it's wrong, accidents could happen. If the lights are out you have to get a policeman to direct traffic – expensive and inefficient and may cause a cascading effect due to lack of coordination with other intersections.
ITS Roadway Equipment Maint and Constr Management Center environmental sensor data Low High Moderate
Little to no impact if this data is observed WYO believes this to be MODERATE or HIGH depending on the application Updates are valuable only if they are timely.
ITS Roadway Equipment Maint and Constr Management Center roadway dynamic signage status Moderate Moderate Moderate
Device status information should not be available, as those with criminal intent may use this information toward their own ends. Data is intended to feed dissemination channels, either C-ITS messages or DMS or other channels, so it should generally be correct as it is distributed widely and any forgery or corrupted data will have widespread impact. Failure of this flow affects traveler information dissemination, the importance of which varies with the data contained in the flow and the scenario. Could be LOW in many instances.
ITS Roadway Equipment Maint and Constr Management Center roadway treatment system status Moderate Moderate Moderate
Related to the control flow. If viewed by a hostile actor, could be leveraged to create unsafe conditions on susceptible roadway segments. Inaccurate, corrupt or unavailability of this flow could lead to inappropriate use of treatment systems, potentially generating unsafe operating conditions. Inaccurate, corrupt or unavailability of this flow could lead to inappropriate use of treatment systems, potentially generating unsafe operating conditions.
ITS Roadway Equipment Other ITS Roadway Equipment dynamic sign coordination Moderate Moderate Moderate
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
ITS Roadway Equipment Other ITS Roadway Equipment environmental sensor coordination Moderate Moderate Low
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
ITS Roadway Equipment Other ITS Roadway Equipment roadway treatment coordination Moderate Moderate Moderate
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Maint and Constr Center Personnel Maint and Constr Management Center maint and constr center personnel input High High High
Direct interactions between personnel and systems in a backoffice environment are effectively protected by physical means, so long as the interaction is in a dedicated facility. If this interaction is virtual (i.e. ,the MCMC is not directly in front of the MCMC Personnel, like in a cloud-based system) then the user's input requires some degree of obfuscation depending on sensitivity of information. Given that this could include information about compromised or ineffectual systems, including security systems, the potential for damage is high. Thus, HIGH. Backoffice operations flows should generally be correct and available as these are the primary interface between operators and system. Backoffice operations flows should generally be correct and available as these are the primary interface between operators and system.
Maint and Constr Management Center ITS Roadway Equipment environmental sensors control Moderate Moderate Moderate
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. DISC: WYO believes this to be MODERATE. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Maint and Constr Management Center ITS Roadway Equipment roadway dynamic signage data Moderate Moderate Moderate
Device control information should not be available, as those with criminal intent may use this information toward their own ends. Data is intended to feed dissemination channels, either C-ITS messages or DMS or other channels, so it should generally be correct as it is distributed widely and any forgery or corrupted data will have widespread impact. Occasional outages of this flow will delay dissemination of the data to travelers (the eventual end user) which could have significant impacts on travel, both safety and mobility impacts.
Maint and Constr Management Center ITS Roadway Equipment roadway treatment system control Moderate High Moderate
Control flows, even for seemingly innocent devices, should be kept confidential to minimize attack vectors. While an individual installation may not be particularly impacted by a cyberattack of its sensor network, another installation might be severely impacted, and different installations are likely to use similar methods, so compromising one leads to compromising all. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Maint and Constr Management Center Maint and Constr Center Personnel maint and constr operations information presentation Not Applicable Moderate Moderate
System maintenance flows should have some protection from casual viewing, as otherwise imposters could gain illicit control over field equipment Information presented to backoffice system operators must be consistent or the operator may perform actions that are not appropriate to the real situation. The backoffice system operator should have access to system operation. If this interface is down then control is effectively lost, as without feedback from the system the operator has no way of knowing what is the correct action to take.
Other ITS Roadway Equipment ITS Roadway Equipment dynamic sign coordination Moderate Moderate Moderate
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Other ITS Roadway Equipment ITS Roadway Equipment environmental sensor coordination Moderate Moderate Low
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.
Other ITS Roadway Equipment ITS Roadway Equipment roadway treatment coordination Moderate Moderate Moderate
Any control flow has some confidentiality requirement, as observation of the flow may enable an attacker to analyze and learn how to assume control. MODERATE for most flows as the potential damage is likely contained, though anything that could have a significant safety impact may be assigned HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flows, even for seemingly innocent devices, should have MODERATE integrity at minimum, just to guarantee that intended control messages are received. Incorrect, corrupted, intercepted and modified control messages can or will result in target field devices not behaving according to operator intent. The severity of this depends on the type of device, which is why some devices are set MODERATE and some HIGH. Since this directly impacts device control, we consider it the same as a control flow. Control flow availability is related to the criticality of being able to remotely control the device. For most devices, this is MODERATE. For purely passive devices with no incident relationship, this will be LOW. All devices should have default modes that enable them to operate without backhaul connectivity, so no device warrants a HIGH.

Standards

The following table lists the standards associated with physical objects in this service package. For standards related to interfaces, see the specific information flow triple pages.

Name Title Physical Object
ITE ATC Advanced Transportation Controller ITS Roadway Equipment
ITE ATC API Application Programming Interface Standard for the Advanced Transportation Controller ITS Roadway Equipment
ITE ATC ITS Cabinet Intelligent Transportation System Standard Specification for Roadside Cabinets ITS Roadway Equipment
ITE ATC Model 2070 Model 2070 Controller Standard ITS Roadway Equipment
NEMA TS 8 Cyber and Physical Security Cyber and Physical Security for Intelligent Transportation Systems ITS Roadway Equipment
Maint and Constr Management Center
NEMA TS2 Traffic Controller Assemblies Traffic Controller Assemblies with NTCIP Requirements ITS Roadway Equipment
NEMA TS4 Hardware Standards for DMS Hardware Standards for Dynamic Message Signs (DMS) With NTCIP Requirements ITS Roadway Equipment