Traveler Support Equipment --> Transit Management Center:
transit stop passenger status

Definitions

transit stop passenger status (Information Flow): The number of passengers waiting at a PT stop with optional route and destination information for waiting passengers to allow current demand at each stop to be monitored and factored into current transit service operations and transit performance monitoring. The stop identity is included.

Traveler Support Equipment (Source Physical Object): 'Traveler Support Equipment' provides access to traveler information at transit stations, transit stops, other fixed sites along travel routes (e.g., rest stops, merchant locations), and major trip generation locations such as special event centers, hotels, office complexes, amusement parks, and theaters. Traveler information access points include kiosks and informational displays supporting varied levels of interaction and information access. At transit stops this might be simple displays providing schedule information and imminent arrival signals. This may be extended to include multi-modal information including traffic conditions and transit schedules to support mode and route selection at major trip generation sites. Personalized route planning and route guidance information can also be provided based on criteria supplied by the traveler. It also supports service enrollment and electronic payment of transit fares. In addition to the traveler information provision, it also enhances security in public areas by supporting traveler activated silent alarms.

Transit Management Center (Destination Physical Object): The 'Transit Management Center' manages transit vehicle fleets and coordinates with other modes and transportation services. It provides operations, maintenance, customer information, planning and management functions for the transit property. It spans distinct central dispatch and garage management systems and supports the spectrum of fixed route, flexible route, paratransit services, transit rail, and bus rapid transit (BRT) service. The physical object's interfaces support communication between transit departments and with other operating entities such as emergency response services and traffic management systems.

Included In

This Triple is in the following Service Packages:

This Triple is described by the following Functional View Functional Objects:

This Triple is described by the following Functional View Data Flows:

This Triple has the following triple relationships:

Communication Solutions

  • (None-Data) - Secure Internet (ITS) (32)
Solutions are sorted in ascending Gap Severity order. The Gap Severity is the parenthetical number at the end of the solution.

Selected Solution

(None-Data) - Secure Internet (ITS)

Solution Description

This solution is used within Australia, the E.U. and the U.S.. It combines standards associated with (None-Data) with those for I-I: Secure Internet (ITS). The (None-Data) standards include an unspecified set of standards at the upper layers. The I-I: Secure Internet (ITS) standards include lower-layer standards that support secure communications between ITS equipment using X.509 or IEEE 1609.2 security certificates.

ITS Application Entity
Mind the gap

Development needed
Click gap icons for more info.

Mgmt
Facilities

Development needed
Security
Mind the gapMind the gap
TransNet
Access

Internet Subnet Alternatives
TransNet TransNet

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Access Access

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

ITS Application ITS Application

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Mgmt Mgmt

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Facility Facility

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Security Security

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.

Characteristics

Characteristic Value
Time Context Recent
Spatial Context Adjacent
Acknowledgement True
Cardinality Unicast
Initiator Source
Authenticable True
Encrypt False


Interoperability Description
Local In cases where an interface is normally encapsulated by a single stakeholder, interoperability is still desirable, but the motive is vendor independence and the efficiencies and choices that an open standards-based interface provides.

Security

Information Flow Security
  Confidentiality Integrity Availability
Rating Low Moderate Moderate
Basis Directly observable information. Could be used to make asset allocation decisions, and so could affect the overall network. Manipulation, incorrect data or unavailability would all have negative effects. Severity will depend on the size of the network; larger networks should consider this MODERATE for both integrity and availability, while smaller networks may consider this LOW. Could be used to make asset allocation decisions, and so could affect the overall network. Manipulation, incorrect data or unavailability would all have negative effects. Severity will depend on the size of the network; larger networks should consider this MODERATE for both integrity and availability, while smaller networks may consider this LOW.


Security Characteristics Value
Authenticable True
Encrypt False