Vehicle --> Connected Vehicle Roadside Equipment:
vehicle situation data

Definitions

vehicle situation data (Information Flow): This flow represents vehicle snapshots that may be provided by the vehicle to support traffic and environmental conditions monitoring. Snapshots are collected by the vehicle for specific events (e.g., when a sensor exceeds a threshold) or periodically and reported based on control parameters when communications is available. Traffic-related data includes snapshots of measured speed and heading and events including starts and stops, speed changes, and other vehicle control events. Environmental data may include measured air temperature, exterior light status, wiper status, sun sensor status, rain sensor status, traction control status, anti-lock brake status, and other collected vehicle system status and sensor information. The collected data is reported along with the location, heading, and time that the data was collected.

Vehicle (Source Physical Object): This 'Vehicle' physical object is used to model core capabilities that are common to more than one type of Vehicle. It provides the vehicle-based general sensory, processing, storage, and communications functions that support efficient, safe, and convenient travel. Many of these capabilities (e.g., see the Vehicle Safety service packages) apply to all vehicle types including personal vehicles, commercial vehicles, emergency vehicles, transit vehicles, and maintenance vehicles. From this perspective, the Vehicle includes the common interfaces and functions that apply to all motorized vehicles. The radio(s) supporting V2V and V2I communications are a key component of the Vehicle. Both one-way and two-way communications options support a spectrum of information services from basic broadcast to advanced personalized information services. Advanced sensors, processors, enhanced driver interfaces, and actuators complement the driver information services so that, in addition to making informed mode and route selections, the driver travels these routes in a safer and more consistent manner. This physical object supports all six levels of driving automation as defined in SAE J3016. Initial collision avoidance functions provide 'vigilant co-pilot' driver warning capabilities. More advanced functions assume limited control of the vehicle to maintain lane position and safe headways. In the most advanced implementations, this Physical Object supports full automation of all aspects of the driving task, aided by communications with other vehicles in the vicinity and in coordination with supporting infrastructure subsystems.

Connected Vehicle Roadside Equipment (Destination Physical Object): 'Connected Vehicle Roadside Equipment' (CV RSE) represents the Connected Vehicle roadside devices that are used to send messages to, and receive messages from, nearby vehicles using Dedicated Short Range Communications (DSRC) or other alternative wireless communications technologies. Communications with adjacent field equipment and back office centers that monitor and control the RSE are also supported. This device operates from a fixed position and may be permanently deployed or a portable device that is located temporarily in the vicinity of a traffic incident, road construction, or a special event. It includes a processor, data storage, and communications capabilities that support secure communications with passing vehicles, other field equipment, and centers.

Included In

This Triple is in the following Service Packages:

This Triple is described by the following Functional View Functional Objects:

This Triple is described by the following Functional View Data Flows:

This Triple has the following triple relationships:

Communication Solutions

Solutions are sorted in ascending Gap Severity order. The Gap Severity is the parenthetical number at the end of the solution.

Selected Solution

EU: Probe Data - G5 TCP

Solution Description

This solution is used within Australia and the E.U.. It combines standards associated with EU: Probe Data with those for V-X: G5 TCP. The EU: Probe Data standards include upper-layer standards required to provide detailed probe data information from a vehicle. The V-X: G5 TCP standards include lower-layer standards that support broadcast, near constant, low latency vehicle-to-vehicle and vehicle-to-infrastructure communications using the ETSI GeoNetworking Bundle with TCP/IPv6 over the 5.9GHz spectrum.

ITS Application Entity
Click gap icons for more info.

Mgmt
Facilities

(None)
Security
Mind the gapMind the gap
TransNet
Mind the gap
Access
TransNet TransNet

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Access Access

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

ITS Application ITS Application

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Mgmt Mgmt

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Facility Facility

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Security Security

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.

Characteristics

Characteristic Value
Time Context Recent
Spatial Context Local
Acknowledgement False
Cardinality Unicast
Initiator Source
Authenticable True
Encrypt True


Interoperability Description
National This triple should be implemented consistently within the geopolitical region through which movement is essentially free (e.g., the United States, the European Union).

Security

Information Flow Security
  Confidentiality Integrity Availability
Rating Moderate Moderate Low
Basis Might be able to link multiple snapshots together and compromise some element of driver/traveler privacy. Some minimal guarantee of data integrity is necessary for all C-ITS flows. DISC: THEA believes this to be LOW: data should be accurate and not tampered with but should be able to cope with some bad data in traffic/environmental condition monitoring; aggregate data data should be timely and readily available, but limited adverse effect; aggregate data


Security Characteristics Value
Authenticable True
Encrypt True