Link Type: Short Range Wireless
Transit Vehicle OBE --> Vehicle OBE:
vehicle path prediction
Definitions
vehicle path prediction (Information Flow): The predicted future vehicle path of travel. This flow includes an indication of the future positions of the transmitting vehicle that can be used by receiving vehicles to support coordinated driving maneuvers and enhance in-lane and out-of-lane threat classification.
Transit Vehicle OBE (Source Physical Object): The Transit Vehicle On-Board equipment (OBE) resides in a transit vehicle and provides the sensory, processing, storage, and communications functions necessary to support safe and efficient movement of passengers. The types of transit vehicles containing this physical object include buses, paratransit vehicles, light rail vehicles, other vehicles designed to carry passengers, and supervisory vehicles. It collects ridership levels and supports electronic fare collection. It supports a traffic signal prioritization function that communicates with the roadside physical object to improve on-schedule performance. Automated vehicle location enhances the information available to the transit operator enabling more efficient operations. On-board sensors support transit vehicle maintenance. The physical object supports on-board security and safety monitoring. This monitoring includes transit user or vehicle operator activated alarms (silent or audible), as well as surveillance and sensor equipment. The surveillance equipment includes video (e.g. CCTV cameras), audio systems and/or event recorder systems. It also furnishes travelers with real-time travel information, continuously updated schedules, transfer options, routes, and fares. A separate 'Vehicle OBE' physical object supports the general vehicle safety and driver information capabilities that apply to all vehicles, including transit vehicles. The Transit Vehicle OBE supplements these general capabilities with capabilities that are specific to transit vehicles.
Vehicle OBE (Destination Physical Object): The Vehicle On-Board Equipment (OBE) provides the vehicle-based sensory, processing, storage, and communications functions that support efficient, safe, and convenient travel. The Vehicle OBE includes general capabilities that apply to passenger cars, trucks, and motorcycles. Many of these capabilities (e.g., see the Vehicle Safety service packages) apply to all vehicle types including personal vehicles, commercial vehicles, emergency vehicles, transit vehicles, and maintenance vehicles. From this perspective, the Vehicle OBE includes the common interfaces and functions that apply to all motorized vehicles. The radio(s) supporting V2V and V2I communications are a key component of the Vehicle OBE. Both one-way and two-way communications options support a spectrum of information services from basic broadcast to advanced personalized information services. Route guidance capabilities assist in formulation of an optimal route and step by step guidance along the travel route. Advanced sensors, processors, enhanced driver interfaces, and actuators complement the driver information services so that, in addition to making informed mode and route selections, the driver travels these routes in a safer and more consistent manner. This physical object supports all six levels of driving automation as defined in SAE J3016. Initial collision avoidance functions provide 'vigilant co-pilot' driver warning capabilities. More advanced functions assume limited control of the vehicle to maintain lane position and safe headways. In the most advanced implementations, this Physical Object supports full automation of all aspects of the driving task, aided by communications with other vehicles in the vicinity and in coordination with supporting infrastructure subsystems.
Included In
This Triple is in the following Service Packages:
This Triple is in the following Functional Objects:
This Triple is described by the following Functional View Data Flows:
This Triple has the following triple relationships:
None |
Communication Solutions
-
US: SAE Basic Safety Messages - WAVE WSMP (10)
-
EU: CA Service - BTP/GeoNetworking/G5 (13)
-
US: SAE LTE-V2X BSM - LTE-V2X WSMP (13)
Selected Solution

Solution Description
ITS Application Entity
![]() ![]() SAE J2735 ![]() SAE J2945/1 ![]() |
Click gap icons for more info.
|
||
Mgmt
Addressed Elsewhere ![]() |
Facilities
![]() SAE J2735 ![]() SAE J2945 ![]() |
Security
![]() |
|
TransNet
IEEE 1609.3 ![]() |
|||
Access
![]() |
Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.
Characteristics
Characteristic | Value |
---|---|
Time Context | Recent |
Spatial Context | Adjacent |
Acknowledgement | False |
Cardinality | Broadcast |
Initiator | Source |
Authenticable | True |
Encrypt | False |
Interoperability | Description |
---|---|
National | This triple should be implemented consistently within the geopolitical region through which movement is essentially free (e.g., the United States, the European Union). |
Security
Information Flow Security | ||||
---|---|---|---|---|
Confidentiality | Integrity | Availability | ||
Rating | Not Applicable | High | Moderate | |
Basis | This is intended for broadcast. | Path prediction is intended for collision avoidance applications, which have high integrity requirements to avoid potentially catastrophic consequences. | Path prediction is intended for collision avoidance applications, which ideally would have HIGH availability requirements, but given the constraints of the wireless medium are reduced to MODERATE. |
Security Characteristics | Value |
---|---|
Authenticable | True |
Encrypt | False |